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A theorem of Bosanquet states that the Fourier series of a 2z-periodic function
of bounded variation is absolutely (C, ) summable. In this paper we give a
quantitative version of Bosanquet’s result.  © 1999 Academic Press

1. INTRODUCTION

Let f be a 2z-periodic and Lebesgue integrable function on [ —=, ].
With each such function f we associate a Fourier series

S(f. x)=a?0+ Y (ay cos kx + by sin kx),

k=1

where

1 T 1 "
a=- " syeoskid, b= [ fuysnkids, k=0,1,.
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If fis a function of bounded variation on [ —x, 7], the well-known
theorem of Dirichlet-Jordan [5, p.57] states that

lim S,(f, x)=3(f(x+0)+ f(x—0)),

n— oo

where (S,(f)) is the sequence of partial sum of the Fourier series of f.
A quantitative version of Dirichlet-Jordan’s theorem was given in [ 1],
where it was shown that, for n>1,

S0 =5 (0 + flr=0)| < % Var¥(o,).
where
o= [JEFO IO LA= O 120,

and Var®(g) is the total variation of g on [a, b].
This result was obtained by using the integral representation of the

sequence of partial sums
sin < + 1> t
n—
N 2

t
2sin -
sin 5

x+0)+f0x=0) 45 [ 9.0 .

N —

Salf. x) =

In this paper we want to establish a similar result for the sequence of
(C, o), >0, means of the partial sums (S,(f)) by a different method. The
(C, o) means of the sequence (S,(f)) are defined by

SHf)=— ¥ Bi- B;=<"+“>.

n k=0 n
If fis a 2zm-periodic function, integrable on [ —x, 7] and such that the
limits f(x +0), f(x — 0) exist, by a theorem of M. Riesz [ 5, p. 94], we have:

lim S%f, x)=3(f(x+0)+ f(x—0))

n— oo

A quantitative version of this result for Fourier Stieltjes series was
obtained by S. M. Mazhar [4]. Mazhar’s result is based on the estimates
for the kernel in the integral representation of the sequence of (C, «) means.
The method used in this paper is based on the concept of absolute
convergence.
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L. S. Bosanquet [3] has proved that the sequence (S%(f)) is absolutely
convergent for every function f of bounded variation on [ —#, 7] and every
o> 0. This means that

f s (] <.

Using the terminology of summability theory, we can restate Bosanquet’s
result by saying that the Fourier series of a function of bounded variation
is summable |C, a| for o> 0. From these two results it follows immediately
that

IS5 %) = 3(f(x +0) + f(x—0))|
< Y ISUfx) =St (fix) € RIS x). (12)
k=n+1
In this paper we will obtain the following estimates for R%( f, x).

THEOREM. Let f be a 2m-periodic function of bounded variation on
[ ==, n]. Then, for o >0 and n =2 we have

R%(f, x) Z Varg™(o.), xeR. (1.3)

Since ¢, is a function of bounded variation, continuous at z=0, we have
Var?™(¢,)— 0 as n — co. Consequently, the right hand side of (1.3) tends
to 0 as n — oo.

In Section 2 we will give the proof of inequality (1.3).

A result related to this theorem for —1 <a <0 was proved in [2].
2. |C, «| SUMMABILITY

The proof of our main result is based on the following Lemmas.

LEMMA 2.1. For >0 let

a—1

(/. X) Z 2=k je(ay cos kx + by sin kx). (2.1)

O(.
= n

Then, for n=1 we have:

(/s X) =n(S5(f, x) =S5 (/. X)) (2.2)
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Remark. For a=1 the relation (2.2) reduces to the identity

1
p— Z k(a, cos kx + b, sin kx)=n(o,(f, x) —0,_(f, X)),
k=1

which is better known in the form

n

k(ay cos kx + b, sin kx) =S, (f, x) — a,(f, x).

Proof of Lemma 1. We have

n

> Brik(Si(f) = Sia(f)

k=1

i LKS(f)— Y BiL (k1) S(f)

— B8 i (B2~ Mn—k) + B2} (k+1)) Si(f).

Since

(n—k)B* =(a+n—1—k)B*~}_,,

n

it follows that

n—1 n—1
(BiZp(n—k)+ By} _(k+1))Su(f)=(n+a) Y B i_Si(f)
k=0 k=0
Hence,

i BE=LK(Sf) — Se (/) =nBESHf) — (n+ ) B2 S (/)

and Lemma 1 has been proved since (n+a) B*~1=nB%. |
Lemma 2 provides key estimates for the (C, «) means

B*— 1

“(x=Z Bucie i kx

of the sequence (sin kx).

LEmMA 2.2. Let a>0. Then

[SHx)| <n|x|, xeR, n=1,2,.., (2.3)
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and

IS0 < ——,

2
o xeR, n=2,3,..

n|x|

(24)

Proof of Lemma 2. Without loss of generality we may assume that

0 < x <. Since

X . 1 1
251n531nkx—cos <k—2>x—cos <k+2>x

we have

251n§ Z B2~} sin kx

— Bo—1 =
=B5", cosz—cos

Hence,

2 sm

: o o _ poa—1
Since B, — B}, _,=B}"",

m

n n—1
251n Z BX~,sinkx|<B:"1+1+ Y B ~:
_ k=1
n—1
<B:Zi+1+ ) By ?
k=1
n—1
=B*"1+ Z By 2=2B*"1.
k=0
Hence,
a—1 oau—1
z B
Y =K in kx| <—— 2L
=1 B X by,

= ) B%”,cos <k—

z B>~} sin kx

1 " 1
2> x—kg B*~} cos <k+2> X

n—1

k=

we have

<B: i+ 1+ Z |B2=1 ,—B*";|.

n—1 1
< >x+ Z Z:}_k—BZ:}c)cos<k+2>x
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and Lemma 2 has been proved since

BZ:} on o 20
= < <
B:  (n+a)(n+a—1) n—1 "n

for n>2, and sin(x/2) > (x/n) for 0<x<n. |
Proof of the Theorem. By Lemma 1 we have

Ry = X ISHN)=Si(Nl= X

k=n+1 k=n+1

(2.5)
Since

1 T
akcoskx—i-bksinkx:ff [flx+1)+ f(x—1)] cos kt dt
T Yo

1 n
== f ¢, (t) cos kt dt,
T Yo

we have by (2.1)

B,
B

1
k

|TM=

k j (1) cos kt dt.
0

=

(/s x) =

I R

1

Since

k fﬂ (1) cos kt dt = r @,(t)dsin kt = —r sin kt do (1),
0 0

0

the preceding formula now becomes

A

> sin vl> do . (1),

that is

1 7
nfx) =~ | S0 o).

Since ¢, is a function of bounded variation, we have

1 T
e 0l <= [ 1Su0] dVari(e,).
T Jo
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Using this inequality and (2.5), we find that

« L & ISE0)] o
Rn(f,x)?f Y deV (@) =%+ B2, (2.6)
T Yo k=n+1
where
Lopmm &0 [SEOI
A= — —dVar; 2.7
n T ‘fO k:§+ . k aro((px) ( )
and
Lo & |1S70)]
B =— dVari(g,). (2.8)
77,' J;T/" k=§+1 k 0

We will estimate .7 first. Let 0 < <n/n. We have

Z dV 0( x <j ”6((Px)

k=n+1

f"/” o 1SE@) \- IS()I

<f"/"< ¥ + 3 ) S v,

g k<n/t k>n/t

(2.9)
Using inequality (2.3), we find that
[S%
y HPs T
k<m/t k<m
Hence,
St
Y S0 <. (2.10)
k<mn/t k
Using inequality (2.4), we find that
> 7|Sk(t)|<2noc > %Szﬂ > %Szﬂ :
k>mn/t k k> 7w/t k=t t k=[n/t]+1 t |: :| +1
Hence,
Se(t
Y IS )|<2a. (2.11)
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Using (2.9) and the inequalities (2.10) and (2.11), we find that

PRS-

S

(Z

Lavarsip. < j 7+ 20) dVari(.)

<(m+20) Varg™(o.).

Since this inequality is valid for any d, it follows that

T

PR L U )<<1
0

o
. 2 +1> Var?™(p,).  (2.12)
k=1

Next we estimate #%. From the inequality (2.4) it follows that

(
= 1 & 2
ﬂﬁ<2o¢f -y —dVar (gz)x)éga

2
L S k

|
j S dVary(.).

n/n
Integrating by parts, we find that

"1 ! I
[ avarip) = varsio) -2 vargpa+ || =8P
T T

7t/n /n t 2
Hence,

2 2 20 % Var?
B < Varkp,) — = Varg"(p) +— | Yard9:) g (2.13)
nm T n t

/n

Using inequalities (2.6), (2.12), and (2.13), we find that

N 20 . 20 (% Vary(e,)
Rifx) < Vargp)+— [ =502
nm n

dt.
7/n t

Replacing ¢ by 7/t in the last integral, we obtain

= Vary(o,)
f 2

n/n

1 1
dt =~ f Varg (¢, dt <— Z Varg (o).
T J1

T k=1

Hence,

20
R/ x) < <Varo(<px s Va,,,/k(%)>

k=1

that is

n

R Z ar O/k( (p x

and, thus, the Theorem has been proved. ||
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